3.735 \(\int \frac{\sqrt{c+d x^2}}{(a+b x^2)^2} \, dx\)

Optimal. Leaf size=82 \[ \frac{c \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{2 a^{3/2} \sqrt{b c-a d}}+\frac{x \sqrt{c+d x^2}}{2 a \left (a+b x^2\right )} \]

[Out]

(x*Sqrt[c + d*x^2])/(2*a*(a + b*x^2)) + (c*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(2*a^(3/2)*S
qrt[b*c - a*d])

________________________________________________________________________________________

Rubi [A]  time = 0.0345822, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {378, 377, 205} \[ \frac{c \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{2 a^{3/2} \sqrt{b c-a d}}+\frac{x \sqrt{c+d x^2}}{2 a \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x^2]/(a + b*x^2)^2,x]

[Out]

(x*Sqrt[c + d*x^2])/(2*a*(a + b*x^2)) + (c*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(2*a^(3/2)*S
qrt[b*c - a*d])

Rule 378

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^q)/(a*n*(p + 1)), x] - Dist[(c*q)/(a*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[n*(p + q + 1) + 1, 0] && GtQ[q, 0] && NeQ[p, -1]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d x^2}}{\left (a+b x^2\right )^2} \, dx &=\frac{x \sqrt{c+d x^2}}{2 a \left (a+b x^2\right )}+\frac{c \int \frac{1}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx}{2 a}\\ &=\frac{x \sqrt{c+d x^2}}{2 a \left (a+b x^2\right )}+\frac{c \operatorname{Subst}\left (\int \frac{1}{a-(-b c+a d) x^2} \, dx,x,\frac{x}{\sqrt{c+d x^2}}\right )}{2 a}\\ &=\frac{x \sqrt{c+d x^2}}{2 a \left (a+b x^2\right )}+\frac{c \tan ^{-1}\left (\frac{\sqrt{b c-a d} x}{\sqrt{a} \sqrt{c+d x^2}}\right )}{2 a^{3/2} \sqrt{b c-a d}}\\ \end{align*}

Mathematica [A]  time = 0.291004, size = 112, normalized size = 1.37 \[ \frac{x \left (\frac{a \left (c+d x^2\right )}{a+b x^2}+\frac{c \sqrt{\frac{d x^2}{c}+1} \tanh ^{-1}\left (\frac{\sqrt{x^2 \left (\frac{d}{c}-\frac{b}{a}\right )}}{\sqrt{\frac{d x^2}{c}+1}}\right )}{\sqrt{\frac{x^2 (a d-b c)}{a c}}}\right )}{2 a^2 \sqrt{c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x^2]/(a + b*x^2)^2,x]

[Out]

(x*((a*(c + d*x^2))/(a + b*x^2) + (c*Sqrt[1 + (d*x^2)/c]*ArcTanh[Sqrt[(-(b/a) + d/c)*x^2]/Sqrt[1 + (d*x^2)/c]]
)/Sqrt[((-(b*c) + a*d)*x^2)/(a*c)]))/(2*a^2*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.009, size = 2559, normalized size = 31.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)^(1/2)/(b*x^2+a)^2,x)

[Out]

-1/4/a/(a*d-b*c)/(x-1/b*(-a*b)^(1/2))*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b
*c)/b)^(3/2)+1/4/b/a*d*(-a*b)^(1/2)/(a*d-b*c)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2)
)-(a*d-b*c)/b)^(1/2)-1/4/b*d^(3/2)/(a*d-b*c)*ln((d*(-a*b)^(1/2)/b+(x-1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x-1/b*(-a*
b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))+1/4/b^2*d^2*(-a*b)^(1/2)/(a*d-b*c)/(
-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*
(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))-1/4/b/a*d*
(-a*b)^(1/2)/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*
d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(
-a*b)^(1/2)))*c+1/4/a*d/(a*d-b*c)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/
b)^(1/2)*x+1/4/a*d^(1/2)/(a*d-b*c)*ln((d*(-a*b)^(1/2)/b+(x-1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x-1/b*(-a*b)^(1/2))^
2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))*c-1/4/a/(a*d-b*c)/(x+1/b*(-a*b)^(1/2))*((x+1/b
*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)-1/4/b/a*d*(-a*b)^(1/2)/(a*d-b*c)
*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)-1/4/b*d^(3/2)/(a*d-b*c)*
ln((-d*(-a*b)^(1/2)/b+(x+1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*
b)^(1/2))-(a*d-b*c)/b)^(1/2))-1/4/b^2*d^2*(-a*b)^(1/2)/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(
-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*
(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))+1/4/b/a*d*(-a*b)^(1/2)/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*
ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*
d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))*c+1/4/a*d/(a*d-b*c)*((x+1/b*(-
a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x+1/4/a*d^(1/2)/(a*d-b*c)*ln((-d*(-
a*b)^(1/2)/b+(x+1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))
-(a*d-b*c)/b)^(1/2))*c-1/4/(-a*b)^(1/2)/a*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a
*d-b*c)/b)^(1/2)+1/4/a*d^(1/2)/b*ln((-d*(-a*b)^(1/2)/b+(x+1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x+1/b*(-a*b)^(1/2))^2
*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))-1/4/(-a*b)^(1/2)/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*
(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b
)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))*d+1/4/(-a*b)^(1/2)/a/(-(a*d-b*c)/b)^(
1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2
*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))*c+1/4/(-a*b)^(1/2)/a*((x-
1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+1/4/a*d^(1/2)/b*ln((d*(-a*b)^
(1/2)/b+(x-1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d
-b*c)/b)^(1/2))+1/4/(-a*b)^(1/2)/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1
/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/
2))/(x-1/b*(-a*b)^(1/2)))*d-1/4/(-a*b)^(1/2)/a/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1
/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d
-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))*c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{2} + c}}{{\left (b x^{2} + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)/(b*x^2 + a)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 2.12999, size = 765, normalized size = 9.33 \begin{align*} \left [\frac{4 \,{\left (a b c - a^{2} d\right )} \sqrt{d x^{2} + c} x -{\left (b c x^{2} + a c\right )} \sqrt{-a b c + a^{2} d} \log \left (\frac{{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \,{\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \,{\left ({\left (b c - 2 \, a d\right )} x^{3} - a c x\right )} \sqrt{-a b c + a^{2} d} \sqrt{d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{8 \,{\left (a^{3} b c - a^{4} d +{\left (a^{2} b^{2} c - a^{3} b d\right )} x^{2}\right )}}, \frac{2 \,{\left (a b c - a^{2} d\right )} \sqrt{d x^{2} + c} x +{\left (b c x^{2} + a c\right )} \sqrt{a b c - a^{2} d} \arctan \left (\frac{\sqrt{a b c - a^{2} d}{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt{d x^{2} + c}}{2 \,{\left ({\left (a b c d - a^{2} d^{2}\right )} x^{3} +{\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right )}{4 \,{\left (a^{3} b c - a^{4} d +{\left (a^{2} b^{2} c - a^{3} b d\right )} x^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^2,x, algorithm="fricas")

[Out]

[1/8*(4*(a*b*c - a^2*d)*sqrt(d*x^2 + c)*x - (b*c*x^2 + a*c)*sqrt(-a*b*c + a^2*d)*log(((b^2*c^2 - 8*a*b*c*d + 8
*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b*c - 2*a*d)*x^3 - a*c*x)*sqrt(-a*b*c + a^2*d)*s
qrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/(a^3*b*c - a^4*d + (a^2*b^2*c - a^3*b*d)*x^2), 1/4*(2*(a*b*c - a
^2*d)*sqrt(d*x^2 + c)*x + (b*c*x^2 + a*c)*sqrt(a*b*c - a^2*d)*arctan(1/2*sqrt(a*b*c - a^2*d)*((b*c - 2*a*d)*x^
2 - a*c)*sqrt(d*x^2 + c)/((a*b*c*d - a^2*d^2)*x^3 + (a*b*c^2 - a^2*c*d)*x)))/(a^3*b*c - a^4*d + (a^2*b^2*c - a
^3*b*d)*x^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d x^{2}}}{\left (a + b x^{2}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)**(1/2)/(b*x**2+a)**2,x)

[Out]

Integral(sqrt(c + d*x**2)/(a + b*x**2)**2, x)

________________________________________________________________________________________

Giac [B]  time = 3.04043, size = 294, normalized size = 3.59 \begin{align*} -\frac{c \sqrt{d} \arctan \left (\frac{{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt{a b c d - a^{2} d^{2}}}\right )}{2 \, \sqrt{a b c d - a^{2} d^{2}} a} - \frac{{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} b c \sqrt{d} - 2 \,{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} a d^{\frac{3}{2}} - b c^{2} \sqrt{d}}{{\left ({\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{4} b - 2 \,{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} b c + 4 \,{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} a d + b c^{2}\right )} a b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^2,x, algorithm="giac")

[Out]

-1/2*c*sqrt(d)*arctan(1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2))/(sqrt(a*b
*c*d - a^2*d^2)*a) - ((sqrt(d)*x - sqrt(d*x^2 + c))^2*b*c*sqrt(d) - 2*(sqrt(d)*x - sqrt(d*x^2 + c))^2*a*d^(3/2
) - b*c^2*sqrt(d))/(((sqrt(d)*x - sqrt(d*x^2 + c))^4*b - 2*(sqrt(d)*x - sqrt(d*x^2 + c))^2*b*c + 4*(sqrt(d)*x
- sqrt(d*x^2 + c))^2*a*d + b*c^2)*a*b)